Curriculum Area: Maths Year: 10 2015/2016

Topics	Year Curriculum	How you can support learning at home, eg.
		Books, websites, family learning through visits.
Module 1	Equations, formulae, expressions and identities	BBC Bitesize website
Algebra	•• know and use the index laws in generalised form for multiplication and division	Mathswatch personal tutor CD
	of integer powers	http://www.mathswatch.co.uk/#/gcse/455494
	•• square a linear expression; expand the product of two linear expressions of the	<u>8524</u>
	form <i>x</i> ± <i>n</i> and simplify the corresponding quadratic expression; establish identities	Edexcel Foundation/Higher Revision guides &
	such as $a2-b2=(a+b)(a-b)$	workbooks available from Edexcel
	•• solve linear equations in one unknown with integer and fractional coefficients;	www.mymaths.co.uk
	solve linear equations that require prior simplification of brackets, including those	
	with negative signs anywhere in the equation	
	•• solve linear inequalities in one variable; represent the solution set on a number	
	line	
	•• solve a pair of simultaneous linear equations by eliminating one variable; link a	
	graph of an equation or a pair of equations to the algebraic solution; consider cases	
	that have no solution or an infinite number of solutions	
	•• derive and use more complex formulae; change the subject of a formula,	
	including cases where a power of the subject appears in the question or solution,	
	e.g. find given that A= r2	
	Sequences, functions and graphs	
	•• find the next term and the <i>n</i> th term of quadratic sequences and explore their	
	properties; deduce properties of the sequences of triangular and square numbers	
	from spatial patterns	
	 plot the graph of the inverse of a linear function 	
	•• understand that equations in the form $y=mx+c$ represent a straight line and that	
	<i>m</i> is the gradient and <i>c</i> is the value of the <i>y</i> -intercept; investigate the gradients of	
	parallel lines and lines perpendicular to these lines	
	•• explore simple properties of quadratic functions; plot graphs of simple quadratic	
	and cubic functions, e.g. $y=x^2$, $y=3x^2+4$, $y=x^3$	
	•• understand that the point of intersection of two different lines in the same two	
	variables that simultaneously describe a real situation is the solution to the	
	simultaneous equations represented by the lines	

Module 2	Place value, ordering and rounding	Edexcel Past Papers Mobile Phone App
Number	•• express numbers in standard index form, both in conventional notation and on a	Springs VLE
	calculator display	Nrich Maths:
	 convert between ordinary and standard index form representations 	http://nrich.maths.org/teacher-secondary
	 round to a given number of significant figures; use significant figures to 	
	approximate answers when multiplying or dividing large numbers	
	Integers, powers and roots	
	•• use index notation with negative and fractional powers, recognising that the	
	index laws can be applied to these as well	
	Fractions, decimals, percentages, ratio and proportion	
	•• distinguish between fractions with denominators that have only prime factors 2	
	or 5 (terminating decimals), and other fractions (recurring decimals)	
	 understand and apply efficient methods to add, subtract, multiply and divide 	
	fractions, interpreting division as a multiplicative inverse	
	•• understand and use proportionality and calculate the result of any proportional	
	change using multiplicative methods	
	 calculate an original amount when given the transformed amount after a 	
	percentage change; use calculators for reverse percentage calculations by doing an	
	appropriate division	
	Number operations	
	•• recognise and use reciprocals; understand 'reciprocal' as a multiplicative inverse;	
	know that any number multiplied by its reciprocal is 1, and that zero has no	
	reciprocal because division by zero is not defined	
	Mental calculation methods	
	 make and justify estimates and approximations of calculations by rounding 	
	numbers to one significant figure and multiplying or dividing mentally	
	Calculator methods	
	•• use an extended range of function keys, including the reciprocal and	
	trigonometric functions	
	• use standard index form, expressed in conventional notation and on a calculator	
	display; know how to enter numbers in standard index form	
	Checking results	
	check results using appropriate methods	
Module 3	Geometrical reasoning	
Snape and Space	•• distinguish between practical demonstration and proof in a geometrical context	

 • solve multi-step problems using properties of angles, of parallel lines, and of triangles and other polygons, justifying inferences and explaining reasoning with diagrams and text • know that the tangent at any point on a circle is perpendicular to the radius at that point; explain why the perpendicular from the centre to the chord bisects the chord • know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not • understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D • understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates • transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotation, using fractions of a turn or degrees; understand at magle • use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector • enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter • find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci • understand from experience of constructing them that triangles given SSS, ASA, ASA or RHS are unique, but that triangles given SSA or AAA are not • find the locus of a point that moves according to a more complex rule, bot	
 triangles and other polygons, justifying inferences and explaining reasoning with diagrams and text • know that the tangent at any point on a circle is perpendicular to the radius at that point; explain why the perpendicular from the centre to the chord bisects the chord • know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not • understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D • understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates • transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotation, using fractions of a turn or degrees; understand that translations are specified by a vector • enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter • find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci • understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not • find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration • understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change • solve problems invo	 solve multi-step problems using properties of angles, of parallel lines, and of
 diagrams and text know that the tangent at any point on a circle is perpendicular to the radius at that point; explain why the perpendicular from the centre to the chord bisects the chord know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, notations and reflections of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving surface areas and volumes of cylinders	triangles and other polygons, justifying inferences and explaining reasoning with
 know that the tangent at any point on a circle is perpendicular to the radius at that point; explain why the perpendicular from the centre to the chord bisects the chord know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving surface areas and volumes of cylinders 	diagrams and text
 that point; explain why the perpendicular from the centre to the chord bisects the chord know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections of a turn or degrees; understand that translations are specified by a vector enarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and Icoi understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving lengths of circular arcs and areas of sectors 	•• know that the tangent at any point on a circle is perpendicular to the radius at
 chord know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	that point; explain why the perpendicular from the centre to the chord bisects the
 know that if two 2-D shapes are similar, corresponding angles are equal and corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders<td>chord</td>	chord
 corresponding sides are in the same ratio; understand from this that any two circles and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors s	•• know that if two 2-D shapes are similar, corresponding angles are equal and
 and any two squares are mathematically similar while in general any two rectangles are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving lengths of circular arcs and areas of sectors 	corresponding sides are in the same ratio; understand from this that any two circles
 are not understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving lengths of circular arcs and areas of sectors 	and any two squares are mathematically similar while in general any two rectangles
 understand and apply Pythagoras' theorem when solving problems in 2-D and simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotation, using fractions preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	are not
 simple problems in 3-D understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotation, using fractions preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors 	 understand and apply Pythagoras' theorem when solving problems in 2-D and
 understand and use trigonometric relationships in right-angled triangles, and use these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors 	simple problems in 3-D
 these to solve problems, including those involving bearings Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors 	•• understand and use trigonometric relationships in right-angled triangles, and use
 Transformations and coordinates transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	these to solve problems, including those involving bearings
 transform 2-D shapes by combinations of translations, rotations and reflections, on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors 	Transformations and coordinates
 on paper and using ICT; use congruence to show that translations, rotations and reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	•• transform 2-D shapes by combinations of translations, rotations and reflections,
 reflections preserve length and angle use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	on paper and using ICT; use congruence to show that translations, rotations and
 use any point as the centre of rotation; measure the angle of rotation, using fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	reflections preserve length and angle
 fractions of a turn or degrees; understand that translations are specified by a vector enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	•• use any point as the centre of rotation; measure the angle of rotation, using
 enlarge 2-D shapes using positive, fractional and negative scale factors, on paper and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration	fractions of a turn or degrees; understand that translations are specified by a vector
 and using ICT; recognise the similarity of the resulting shapes; understand and use the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	•• enlarge 2-D shapes using positive, fractional and negative scale factors, on paper
 the effects of enlargement on perimeter find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving surface areas and volumes of cylinders 	and using ICT; recognise the similarity of the resulting shapes; understand and use
 find the points that divide a line in a given ratio, using the properties of similar triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving surface areas and volumes of cylinders 	the effects of enlargement on perimeter
 triangles; calculate the length of AB, given the coordinates of points A and B Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	•• find the points that divide a line in a given ratio, using the properties of similar
 Construction and loci understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	triangles; calculate the length of AB, given the coordinates of points A and B
 understand from experience of constructing them that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	Construction and loci
 ASA or RHS are unique, but that triangles given SSA or AAA are not find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	•• understand from experience of constructing them that triangles given SSS, SAS,
 find the locus of a point that moves according to a more complex rule, both by reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	ASA or RHS are unique, but that triangles given SSA or AAA are not
 reasoning and by using ICT Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	•• find the locus of a point that moves according to a more complex rule, both by
 Measures and mensuration understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	reasoning and by using ICT
 understand and use measures of speed (and other compound measures such as density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	Measures and mensuration
 density or pressure); solve problems involving constant or average rates of change solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	 understand and use measures of speed (and other compound measures such as
 solve problems involving lengths of circular arcs and areas of sectors solve problems involving surface areas and volumes of cylinders 	density or pressure); solve problems involving constant or average rates of change
 solve problems involving surface areas and volumes of cylinders 	 solve problems involving lengths of circular arcs and areas of sectors
	 solve problems involving surface areas and volumes of cylinders

Module 4	Specifying a problem, planning and collecting data	
Handling Data & Probability	 independently devise a suitable plan for a substantial statistical project and 	
	justify the decisions made	
	 identify possible sources of bias and plan how to minimise it 	
	 break a task down into an appropriate series of key statements (hypotheses), 	
	and decide upon the best methods for testing these	
	•• gather data from primary and secondary sources, using ICT and other methods,	
	including data from observation, controlled experiment, data logging, printed tables	
	and lists	
	Processing and representing data	
	•• use an appropriate range of statistical methods to explore and summarise data;	
	including estimating and finding the mean, median, quartiles and interquartile range	
	for large data sets (by calculation or using a cumulative frequency diagram)	
	 select, construct and modify, on paper and using ICT, suitable graphical 	
	representation to progress an enquiry and identify key features present in the data.	
	Include:	
	 – cumulative frequency tables and diagrams 	
	– box plots	
	 scatter graphs and lines of best fit (by eye 	
	Interpreting and discussing results	
	 analyse data to find patterns and exceptions, and try to explain anomalies; 	
	include social statistics such as index numbers, time series and survey data	
	•• appreciate that correlation is a measure of the strength of association between	
	two variables; distinguish between positive, negative and zero correlation, using	
	lines of best fit; appreciate that zero correlation does not necessarily imply 'no	
	relationship' but merely 'no linear relationship'	
	• examine critically the results of a statistical enquiry; justify choice of statistical	
	representations and relate summarised data to the questions being explored	
	Probability	
	• Use tree diagrams to represent outcomes of two or more events and to calculate	
	probabilities of combinations of independent events	
	• Know when to add or multiply two probabilities: If A and B are mutually	
	exclusive, then the probability of A or B occurring is P(A) + P(B), whereas if A and B	
	are independent events, the probability of A and B occurring is $p(A) \times p(p)$	
	P(A) × P(B)	

		-
	 understand relative frequency as an estimate of probability and use this to compare outcomes of experiments 	
Modulo 5	Penresenting	Using Maths at home in a real life context, in
Mathematical Processes and	Representing	planning floor space in a bodroom, coloulating
Applications	• compare and evaluate representations; explain the reatures selected and justify	planning noor space in a bedroom, calculating
Applications	the choice of representation in relation to the context	coverage of a wall in paint and the cost of tins
	Analysing – use mathematical reasoning	of paint, converting measurements for
	• Identify a range of strategies and appreciate that more than one approach may	ingredients in cooking etc
	be necessary; explore the effects of varying values and look for invariance and	
	covariance in models and representations; examine and refine arguments,	
	conclusions and generalisations; produce simple proofs	
	Interpreting and evaluating	
	• make sense of, and judge the value of, own findings and those presented by	
	others; judge the strength of empirical evidence and distinguish between evidence	
	and proof; justify generalisations, arguments or solutions	
	Communicating and reflecting	
	• use a range of forms to communicate findings effectively to different audiences;	
	review findings and look for equivalence to different problems with similar structure	

